Time-dependent confounders: Structural nested failure time models

J.M. Robins: Structural nested failure time models

Ex. 1 Alpha-tocopherol/beta-carotene study in Finland

Main publication N Engl J Med **330**, 1020-1035, 1994

 2×2 factorial design AT no effect vs. placebo

BC bad vs. placebo

by intention-to-treat

Reanalysis incorporating compliance:

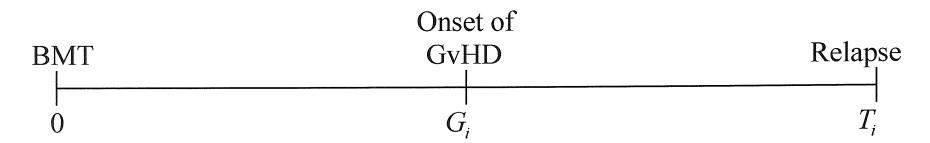
P.A. Korhonen, N.M. Laird, J. Palmgren (1999). Statist.Med. 18, 2879-2897.

 U_i : survival time of person i if no $\beta - c$.

Model:

$$U_i = T_i$$
 in placebo group

$$U_i = \int_0^{Bi} e^{\psi_0} ds + (T_i - B_i)$$
 in $\beta - c$. group


By randomisation, distribution of U_i should be the same in both groups: Note: U_i is counterfactual in the $\beta - c$. group.

Estimate ψ_0 by requiring distr. U_i in plac. group = distr. U_i in $\beta - c$. group.

Several complications re competing risk, censoring.

Ex. 2 Graft vs. Leukaemia Effect after Bone Marrow Transplantation using Structural Nested Failure Time Models

Keiding, Filiberti, Esbjerg, Robins, Jacobsen (1999). Biometrics 55, 23-28.

 $T_{G-,i}$ time to relapse if no GvHD $T_{G+,i}$ time to relapse if always GvHD

Model:

$$T_{G-,i}(\psi_0) = \begin{cases} T_i & T_i \leq G_i \\ G_i + (T_i - G_i)e^{\psi_0} & T_i > G_i \end{cases}$$

No randomisation!

Instead assume that we have measured all relevant (possibly time-dependent) confounders.

Conditional on these, nature does a sequential randomized experiment deciding whether or not to allocate GvHD.

 \Rightarrow estimate ψ_0 by requiring

$$\lambda_{G}(t|\mathcal{H}_{t}) = \lambda_{G}(t|\mathcal{H}_{t}, T_{G-}(\psi_{0}))$$

Details on Bone Marrow Transplantation example

163 pts DK, S, SF

AML = acute myeloid leukaemia

ALL = acute lymphoblastic leukaemia

CMU = cytomegalovirus infection

$$CMV \rightarrow GvHD \rightarrow Relapse$$
 $\searrow CMV \nearrow$

Basic question: does GvHD decrease Relapse risk?

$GvHD \rightarrow Relapse$

Estimated regression coefficients in Cox regression model for development of relapse

Covariate	\hat{eta}	s.d. $(\hat{oldsymbol{eta}})$	\hat{eta} /s.d. $\left(\hat{eta}\right)$	$\exp\left(\hat{eta}\right)$
Transplantation during				
Relapse	0.9644	0.4756	2.0277	2.6232
Remission	0	-	-	-
Donor CMV immunity				
at transplantation				
Yes	-1.3241	0.4271	-3.1005	0.2660
No	0	-	-	-
Transplantation during				
After 1° Remission	2.0683	0.4950	4.1786	7.9111
Otherwise	0	-	-	-
Donor age				
> 20	1.4014	0.4075	3.4386	4.0609
≤ 20	0	-	-	-
GvHD (t)				
Yes at t	-1.1033	0.4134	-2.6687	0.3318
No at t	0	-	-	-

It seems that GvHD reduces risk to 1/3.

But what is the role of CMV?

$CMV \rightarrow GvHD$

Estimated regression coefficients in model for development of GvHD with CMV as time-dependent covariate

Covariate	\hat{eta}	s.d. $(\hat{\beta})$	\hat{eta} /s.d. $\left(\hat{eta}\right)$	$\exp\left(\hat{eta}\right)$
Patient CMV immunity at transplantation				
Yes	0.7808	0.2598	3.0049	2.1833
No	0	-	-	-
Mismatch				
Yes	0.7796	0.2788	2.7958	2.1805
No	0	-	-	-
Transplantation during				
Relapse	0.9778	0.3318	2.9468	2.6587
Remission	0	-	-	-
CMV (t)				
Yes at t	1.0225	0.3681	2.7778	2.7803
No at t	0	_	_	-

CMV is associated with *increased* risk of later development of GvHD (estimated rate ratio = 2.8).

GvHD → Relapse CMV /

Estimated regression coefficients in model for development of relapse with CMV as time-dependent covariate

Covariate	\hat{eta}	s.d. $(\hat{\beta})$	\hat{eta} /s.d. $\left(\hat{eta}\right)$	$\exp(\hat{eta})$
Transplantation during Relapse	0.9807	0.4780	2.0517	2.6664
Remission	0	-	-	-
Donor CMV immunity				
at transplantation Yes	-1.1989	0.4280	-2.8011	0.3015
No	0	-	-	-
Transplantation				
After 1° Remission	2.1373	0.5014	4.2623	8.4765
Otherwise	0	-	-	-
Donor age				
> 20	1.9811	0.4914	4.0313	7.2509
≤ 20 GvHD (t)	0	-	-	-
Yes at t	-1.1057	0.4184	-2.6429	0.3410
No at t	0	-	-	-
CMV (t)				
Yes at t	-1.0507	0.5437	-1.9326	0.3497
No at t	0	-	-	-

CMV decrases relapse risk (RR = 0.35)

GvHD

∠ CMV

Estimated regression coefficients in model for development of CMV with GvHD as time-dependent covariate

Covariate	\hat{eta}	s.d. $(\hat{\beta})$	\hat{eta} /s.d. $\left(\hat{eta}\right)$	$\exp\left(\hat{eta}\right)$
CMV1 (t) Yes at t No at t	0.8757 0	0.2993	2.9258	2.4007

GvHD increases risk of transition to CMV

Summary of effects

expressed as RR excluding time-fixed covariates

$$\begin{array}{c}
\text{CMV} \xrightarrow{2.8} \text{GvHD} \xrightarrow{0.3} \text{Relapse} \\
2.4 \searrow & \nearrow 0.3 \\
\text{CMV}
\end{array}$$

G-estimation approach

 T_i : actual time to relapse for pt. i (could be censored due to death in

remission or end of follow-up)

 $T_{G_{-,i}}$ counterfactual time to relapse for pt. i

if GvHD did not exist

 $T_{G+,i}$ counterfactual time to relapse for pt. i

if *i* contracted GvHD immediately after transplantation

Assumption of no unmeasured counfounders:

Onset of GvHD
$$\frac{\parallel}{\mathcal{H}_t}$$
 $T_{G+,i}$, $T_{G-,i}$

(covariate history at t)

Sharp null hypothesis of no effect of GvHD: $\forall_i : T_i = T_{G+,i} = T_{G-,i}$

Null hypothesis

Sharp:
$$T_i = T_{G+,i} = T_{G-,i}$$
 pointwise

Ordinary:
$$T_i = T_{G+,i} = T_{G-,i}$$
 in distribution

may be tested by testing

$$\lambda_G(t|H(t)) = \lambda_G(t|H(t),T)$$

: does intensity of GvHD depend also on relapse time T

 $\lambda_G(t|H(t))$: intensity of onset of "treatment" GvHD

Modelling of effect of GvHD: time-dependent accelerated failure time model

G: time of GvHD T: relapse time

Assume acceleration parameter ψ .

$$T_{G^{-}}(\psi) = \int_{0}^{T} e^{\psi I\{t>G\}} dt = \begin{cases} T & \text{for } T \leq G \\ G + (T - G)e^{\psi} & \text{for } T > G \end{cases}$$

 $\psi > 0$: $T_{G^-} > T$ treatment harmful

 $\psi < 0$: $T_{G-} < T$ treatment beneficial

 $\psi = 0$: $T_{G_{-}} = T$ treatment neutral

Note: T_{G^+} corresponds to T for G = 0so under this model $T_{G^-}(\psi) = T_{G^+}(\psi)e^{\psi}$

Censoring problems

End of follow-up: Assume potential censoring time C known; reduce to $T \wedge C$, suitably accelerated for $\psi \neq 0$:

$$T \wedge C_t(\psi)$$
 where for $t \leq G$ $C_t(\psi) = C$, $\psi \geq 0$ $C_t(\psi) = t + (C - t)e^{\psi}$, $\psi \leq 0$.

Death in remission (competing risk)

weight
$$W_i = \begin{cases} 0 & \text{if } i \text{ died in remission} \\ 1/P(\text{not dying in remission}) & \text{if not} \end{cases}$$

Inverse Probability of Censoring Weighted (IPCW) estimating equation ~ Horvitz-Thompson estimator in sampling

P (not dying in remission) estimated from Cox model with time-dependent covariates, allowing for some forms of dependent censoring.

Estimation of ψ

Estimate ψ by requiring

$$\lambda_G(t|\mathcal{H}(t)) = \lambda_G(t|\mathcal{H}(t), T_{G-}(\psi))$$

Point estimate: the ψ yielding the least significant test statistic

Confidence interval: all ψ yielding acceptance

Score test using some suitable score function, here we use

$$A_{t}(\psi) = I(T(\psi) < C_{t}(\psi))I$$
 (not died in remission) W

Result

Cox regression of occurrence of GvHD

Covariate	\hat{eta}	$\mathrm{s.d.}(\hat{eta})$	\hat{eta} /s.d. (\hat{eta})	$\exp\left(\hat{eta} ight)$
Transplantation during				
Relapse Remission	1.015 0	0.345	2.942	2.759 -
C_i (in days)	-0.000100	0.000215	-0.465	1.000
Patient CMV immunity at transplantation				
Yes	0.810	0.261	3.103	2.249
No	0	-	-	-
Mismatch				
Yes	0.882	0.280	3.150	2.416
No	0	-	-	-
CMV(t)				
Yes at t	0.630	0.350	1.800	1.877
No at t	0	-	-	-
$A_{t}\left(0\right)$	-0.00087	0.105	-0.0829	0.991

$$\hat{\psi}_{0} = -0.80$$

95% conf. iv.

(-2.60, 0.90)

Interpretation

$$\hat{\psi}_{0} = -0.80$$

insignificant tendency that GvHD decelerates time to relapse.

Relative increase in lifetime by getting GvHD immediately versus never getting it:

$$\frac{T_{G^{+}} - T_{G^{-}}}{T_{G^{-}}} = e^{-\psi_{0}} - 1 \simeq 2.2 - 1 = 1.2$$

so that GvHD implies 120% increase in relapse-free time. This is in qualitative agreement with earlier analyses.